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Onset of avalanches in granular media
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Marginal stability and avalanches at angles © > ©,ya; are associated with granular media (GM)
subject to special initial conditions. We study the Newtonian dynamics of random size-mismatched
hard-core-like disks in a two-dimensional box which confirm claims that avalanches in GM are re-
stricted to a few topmost boundary layers. We find that the velocity profile of the top layer grains,
which obey |v| « t7, typically with 3.5 < ~, signal the onset of an avalanche in GM. Our studies
suggest that the dynamics of a single particle in a cosine potential in the presence of a linear field
well describes the onset of motion of a top layer grain.

PACS number(s): 05.40.+j, 46.10.+z, 47.20.Ky, 03.20.+i

Granular media (GM) such as dry sand, powders, glass
beads, etc., possess characteristics of both the solid and
the liquid phases. Granular systems are inherently in-
homogeneous with highly anisotropic short ranged force
networks which lead to their marginal stability and in-
sure that they exhibit flow properties when inclined at
angles equaling or exceeding some characteristic angle
©O.,va1 subject to appropriate initial conditions, namely,
the velocities of all the grains are zero at time t = 0 [1].
The issue of marginal stability has led to attempts to
connect the dynamical properties of these systems with
the slow dynamics in systems such as flux lattices, spin
glasses, charge density wave systems, etc. [1,2]. The
physics of the onset of instabilities, i.e., of avalanches, in
GM concerns a complicated dynamical process far from
equilibrium that not only renders these systems interest-
ing from a dynamics standpoint but also for important
practical reasons such as predicting geological processes
(such as mass wasting via mudslides and landslides, sand
and snow avalanches, plate tectonics, and earthquakes)
as well [3]. The issue of the onset of avalanches in GM is
the central theme of this Brief Report.

Experiments and some simulations on spherical grains
demonstrate that the hard-core-like interactions which
characterize GM [1, 2, 4] are responsible for the nonclose
packed structure of these systems in their metastable
states and hence for their marginal or reduced stabil-
ity [1, 2, 4,5]. More precisely, experiments lead to the
following observations: (i) When dry GM are inclined at
a slope that exceeds a characteristic angle, the boundary
layers (typically < 6) begin to flow [1]. (ii) Given the
strong gravitational field compared to the nearly hard-
core-like interaction between the grains, thermal energy
is vanishingly small, and hence the physics of GM can
be studied at temperature T = 0. (iii) The motion of
the grains, especially those in the boundary layers, is
“sticky” in nature (usually explained via the notion of
friction). (iv) Recent studies of Jaeger et al. [6] demon-
strate that for a system of glass beads of mean radius
0.27 mm with about 14% size mismatch, avalanche oc-
curs at O,y = O, + §, where @, = 26° is the angle
between the horizontal and the free surface of the GM
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after an avalanche has restored the pile to a metastable
equilibrium slope and § ~ 2.6°. (v) Recent studies have
demonstrated that the sound propagation in GM is pri-
marily along the vertical direction (due to gravitational
force) with sound velocity v o P'/¢ P being the pres-
sure, while the horizontal sound velocity is nearly zero,
which bear testimony to the approximately hard-core-like
nature of the intergranular interactions [1]. As we shall
show, our studies on the onset of avalanches in a two-
dimensional (2D) system with hard-core-like intergrain
potential lead to some results and to some observations
that are consistent with (i)—(v) enumerated above.

Our study can be summarized as follows: (i) We nu-
merically solve the Newtonian equations for a short-
ranged interacting system of hard-core-like disks in a
gravitational field in a finite box tilted at an angle ©.
(ii) Our calculations reveal that boundary layer flow [(i)
above] as well as the observed ©,yva1’s are readily under-
standable without any special assumptions on the time
evolution process. The parameters of the potential are
chosen from available experimental information (6] and
readily reveal that a T = 0 study is adequate [see (ii)
above]. (iii) Although our calculations do not invoke
friction, they nevertheless demonstrate (for the chosen
two-body potential) that the motion of a typical grain is
“sticky” in nature [see (iii) in the preceding paragraph].
(iv) We find that the onset of an avalanche in GM is
typically characterized by a dramatic rise in the average
absolute velocity profile (AAVP) of the top layer grains,
a feature that appears not to have been well explored
before. We suggest that such dramatic behavior may, in
principle, be exploited to predict the onset of avalanches
in model systems and eventually even in geological con-
texts [7]. (v) We show that the velocity profile of a single
top layer grain at the onset of an avalanche can be ex-
plained in terms of a 1D one-body model—that of a parti-
cle initially at rest which later traverses out of a corruga-
tion potential upon being driven by a linear gravitational
field. While this explanation is not meant to undermine
the collective origins of the onset process, it does sug-
gest that at the onset, a set of top layer grains behave
as independent particles on some corrugation modulated

4712 ©1994 The American Physical Society



49 BRIEF REPORTS 4713

surface. The details of our study are given below.

We assume a truncated Slater-Buckingham pair poten-
tial [8] between the hard-core-like disks. In addition, the
disks experience a gravitational field. The Hamiltonian

H= Z:v=1 (%;' + Vi) + %ij Vij, where
Ve s (el 0-2)]- () e
1)

V; = mgh,;, (2)

and where we choose r;; such that dV;;/dr;; < 0 and the
softness or hardness of the disks is tunable via a. In the
present study (with a 2D system), we choose the follow-
ing parameters in order to compare our 2D study with the
available experiments to the extent that is feasible. Thus
we assume € = 5x 1073 kg(m/s)?, a = 55, and 0 = r;+1;,
r; = 1073 m, m = 10~* kg. For the rotational kinetic
energy (of each grain) to be comparable with the transla-
tional kinetic energy, an angular velocity of w ~ 2000 s—!
is needed [4, 9]. This is unusually high and thus justifies
ignoring rotational effects in this first study. The time
integration of the equations of motion are carried out via
a fourth-order Gear predictor-corrector algorithm [10].
The integration time step At = 5 x 10~7 s is intention-
ally chosen to be small enough to consider effects of the
short range intergranular interactions accurately for this
hard-disk-like GM. The time integral is carried out up
to tmax = 1071 s, which turns out to be adequate for
studying the commencement of the avalanche in our 2D
system.

The coupled equations of motion are vazl m%‘ =

— Zil V(V;j+V;), where N is the total number of grains
each of fixed mass m. In the first and simplest study,
we start with a lattice with no size mismatch between
the grains and with every disk (or grain) at rest and ar-
ranged in a close packed triangular lattice in a box with
the base oriented parallel to the horizon. Given that
the triangular lattice provides the most stable structure
in 2D, this configuration yields an excellent and highly
stable equilibrium structure to start from. For uniform
hard-core disks, geometry dictates that ©,, = 30° while
Oaval < 30° for a soft disk case. We have also stud-
ied avalanches in systems with small size mismatch (e.g.,
~ 1% between the grains) as we shall describe below.
In these studies the system is relaxed to the lowest en-
ergy, which in general yields a distorted triangular lat-
tice, which in turn serves as the equilibrium structure
at ©® = 0 and the starting point of our studies. As one
would expect, the introduction of mismatch renders the
system dynamically more responsive with respect to the
gravitational field than when compared to the pristine
one-component system. The walls of the box enclosing
the lattice are kept perfectly elastic except when relax-
ing the system as will be discussed below. Studies with
larger systems with mismatches as large as ~ 10% and
randomly packed have also been carried out [4,11]. Pre-
liminary results indicate that the nature of the onset of
an avalanche remains essentially invariant for these larger
mismatches when random packing is enforced [4].

Our calculations were performed on a Convex C240
computer. Starting from the relaxed lattice at ® = 0,
the box is “adiabatically tilted” by some angle A© (i.e.,
the grain coordinates are transformed via the rotation
angle A®) and allowed to come to the lowest energy.
Also, every grain is brought to rest (recall T = 0) after
the box is tilted by draining the vibrational kinetic en-
ergy of the grains via highly inelastic collisions between
the grains and the walls, an approach which works effi-
ciently for “small” systems. This “adiabatic tilting” is
not only important to render the numerical study of the
model system physically realistic, but also for the sake
of carrying out the next important step, i.e., study the
onset of an avalanche in a meaningful way. This dissipa-
tion is removed after the system has relaxed completely.
It turns out that the “adiabatic tilting” can be accom-
plished in steps of a few degrees at low tilt angles and
at increments of 0.5° or less at angles near (what be-
comes) O,yal, i.€., the angle in which the avalanche com-
mences as signalled by collective motion of the top layer
grains along the incline. This collective motion can be
well characterized by a simple quantity, the AAVP pa-
rameter (checked for self-consistency over several runs)
defined as |vz| = | Yy, vF/N1|, where vf denotes the ve-
locity along the incline of each of the N; grains in the top
layer, which shows a dramatic power law growth in time
at the onset of an avalanche and eventually grows linear
in time [Fig. 1(a)]. A power law growth is also obtained
for the corresponding position profile parameter defined
in the same way as above with z; instead of v7. The nu-
merical accuracy of ©,., is, in practice, sensitive to the
details of the “adiabatic tilting” process in marginally
stable systems such as those which are far from equilib-
rium, and hence ©,,) is inevitably accuracy limited in a
numerical study. We have therefore paid careful atten-
tion to the manner in which ©,., was obtained and every
calculation has been repeated several times for reliable
determination of ©,,. The top layer velocity and the
top layer position profiles perpendicular to the surface
are, as one would expect, dominated by fluctuations. No
clear-cut signature appears to be associated with the on-
set of an avalanche in the direction perpendicular to the
incline in our 2D model. However, there are interesting
effects that emerge in the layers immediately below the
top layer preceding an avalanche for the close packed sys-
tems studied. These effects are described in Figs. 1 and
2. Figure 1 clearly shows that the onset of an avalanche
occurs at t = 0.04 s in both the bimodal and the random
size mismatch systems. Figure 2 reveals that the onset of
an avalanche is significantly influenced by the boundary
(observe the fifth grain from the right boundary and its
vicinity in Fig. 2 at ¢ = 0.01 s). Our studies suggest that
typically the boundary helps nucleate defects in deeper
layers which eventually distort the “corrugated surface”
in the top most layer. An important issue concerning
the boundary is that our boundary conditions are quali-
tatively consistent with those used in the experiments of
Jaeger et al. [1] and that a different boundary condition
could lead to different avalanche angles. However, as we
shall show below, for the chosen boundary conditions,
the results appear to be essentially independent of the
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FIG. 1. (a) In|ve| vs Int for bimodal mismatch case

(slope=5.36 at avalanche); (b) In|vz| vs Int for random mis-
match case (slope=4.46 at avalanche). The dip in (b) near
Int & 1 originates in reflection from the right wall; (c) and
(d) Log of average acceleration and average velocity parallel
and perpendicular to the plane, respectively, in the bimodal
mismatch system.

system size.

The main focus of our study is to achieve some under-
standing of the experimentally observed properties (i)-
(v) enumerated in the beginning of this Brief Report. We
have studied two specific system sizes. The first study
involved a 212 grain system with eight layers [11]. This
study established that the avalanche is a boundary layer
process involving the first couple of layers at the early
stages of the avalanche and involves top layer flow and
will be discussed elsewhere [4,11]. We then simplified and
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FIG. 2. Onset of an avalanche in the box with corrugated
base as a function of real time for the model system. Observe
that the avalanche is nucleated near the right boundary.

enlarged our system by studying a 418 grain system and a
834 grain system with only four layers and a corrugation
potential which replaced the fifth and lower layers via a
one-body corrugation potential chosen to approximately
describe the close packed nature of the granular system
in layers deep below the surface. Given that our focus lies
on the problem of onset of an avalanche, the introduction
of a corrugation potential to mimick a layer sufficiently
below the interface makes little or no discernible differ-
ence in the processes that lead to the commencement of
the avalanche.

We find that the average velocity profile of the top
layer grains exhibits the characteristic behavior given by
[vz] o t7, where typically we find 4 < v < 6 for the
chosen potential. The corresponding average position
profile, not surprisingly, is consistent with |z| oc t7*1.
Our numerical studies reveal a ©,,, with an accuracy
of = £1.0°. The role of size mismatch at the onset
of an avalanche is not well understood. We have car-
ried out our calculations for three distinct systems with
mismatches p = 2(r; — r;)/(r: + r;), being zero in one,
and 0.01 in the other two, where r; defines the radius
of any disk i. We consider both bimodal (i.e., system
with only two different disk sizes, 0.995 x 10~3 m and
1.005x 1072 m) and linear random (i.e., continuous distri-
bution of mismatches with disk radii distributed between
0.995 x 1073 m and 1.005 x 10~2 m) size mismatches in
our study. It turns out, as mentioned earlier, that the
experimental studies of Jaeger et al. [6] involved much
larger size mismatches, ~ 0.14 in 3D, which was intrinsi-
cally more stable than a 2D GM. We find that the veloc-
ity profiles are insensitive to the mismatch parameter for
sufficiently small mismatches (such as g ~ 0.01). In ad-
dition, as we shall see below, we find that ©,,,) is at best
only weakly dependent upon the nature of the mismatch
for sufficiently small mismatches within the accuracy of
our calculations.

Simple geometry reveals that in a hard disk system
with zero mismatch, @, = 30°. The value of O,y
for our hard-disk-like system is 30° — A@, typically with
A® < 4°. The departure from the 30° value is a measure
of the softness of the potential and is non-trivial to track
down accurately numerically due to limitations involved
in the “adiabatic tilting” calculations mentioned earlier.
In the bimodal system with g = 0.01 and 418 grains
we find that the first avalanche occurs at ©,,, = 26.7°
[see Fig. 1(a)]. For a system with random linear size
mismatch with g = 0.01 and 418 grains we find that an
avalanche occurs at ©,ya1 = 27.7° [see Fig. 1(b)]. It turns
out that constraints on computational power, which con-
strains the accuracy of the “adiabatic tilting” process,
possibly lead us to underestimate @y, for the two sys-
tems with a maximum estimated inaccuracy of +1.0° in
each case. This latter system is therefore more stable
than the former as one would intuitively expect. The
numbers are reasonable compared to the experiments of
Jaeger et al. [6] which reported ©,ya ~ 29° for a 3D
system. We have also carried out our calculations for an
834 grain system for which the bimodal mismatch sys-
tem yields ©,ys) = 27.8° and the linear random mismatch
system yields 28.6°. For any given small mismatch the
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avalanche (characterized by collective motion of top layer
grains) commenced at about the same time, between 0.04
and 0.05 s (see Fig. 1) a finding that remained invari-
ant over a large number of independent calculations. We
found that the characteristic time at which the avalanche
commences is approximately independent of the size mis-
match for small mismatches and depends only upon the
hard-disk-like nature of the potential. Clearly, one would
expect this characteristic time to depend on parameters
such as mismatch and the softness of the potential and
the strength of the gravitational field. The details of this
dependence requires more extensive analysis of the pa-
rameter space for a, o, g, and p and will be addressed
elsewhere [11].

Figures 1(a) and 1(b) present the average velocity pro-
file parameters, |v;|, for the bimodal and random size
mismatch cases, and Figs. 1(c) and 1(d) present the av-
erage acceleration (velocity) profile parameter along z(y)
direction for the top layer for the system with bimodal
size mismatch. The averages are taken over the top layer
grains and calculated by considering 54 grains distributed
about the center of the top layer. This procedure insures
that the boundary effects do not contaminate the veloc-
ity profile parameter. Our studies reveal that |v,| « t7,
where v = 5.36 and 4.46 for the bimodal and linear ran-
dom mismatch systems, respectively, in Figs. 1(a) and
1(b). The corresponding «’s for the 834 grain system
yielded 4.55 and 4.80, respectively. We have, in addition,
checked our results for a case with V; = 10mgh in Eq. (2).
Interestingly, the results remained invariant except for a
reduction in O,,, which was 21.0° and 22.2° for the bi-
modal and random mismatch systems, respectively. The
parameter v was found to be 4.23 and 4.57 for these two
cases, respectively.

The unusual behavior of the velocity profile parame-
ter |vg| ox t7 where 4 < v at the onset of an avalanche
can be understood via a simple 1D one body model with
appropriate choice of values of the parameters described
as follows. Consider a particle being acted upon by a
linear potential field in a corrugation potential defined
by the following Hamiltonian (see the inset in Fig. 3):

H = p?/2M + Acos(kz) + Kz, which gives M% =
Ak sin(kz)— K, where 2A is the height difference between
the crest and the trough of the corrugation potential, k&
is the corrugation period, and K is the coupling to the
linear field (in this case, the gravitational field). Both
A and K depend on the direction of the gravitational
field with respect to the surface of the top layer of the

GM. Choosing parameters in agreement with the phys-
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FIG. 3. The velocity profile of a particle acted upon by a

linear field in a corrugation potential (inset). Parameters are
chosen to describe the model many body system and yield
a slope =~ 4.58, in remarkable agreement with many body
calculation results.

ical model M = 104 kg, A = 2.1x1077 J, k = wx103
m~!, and K = —5.05x10~* N and choosing an initial ve-
locity v(0) = 0 and initial position =(0) = 1/1000 which
guarantee that the particle is at rest at the trough of the
cosine potential at ¢ = 0 and integrating the equation
of motion in time, we obtain the velocity profile shown
in Fig. 3. Interestingly, our parameters give a velocity
profile with v = 4.58, in excellent agreement with the
numbers obtained from the extensive numerical analysis
described here. The strength of the power law growth
of the velocity is sensitive to the values of the parame-
ters chosen and hence stronger growth laws are also con-
ceivable. This assertion can be verified via a short time
expansion study of v(t). This agreement illustrates the
power of this one dimensional simple model and helps un-
derstand how + might change when a significantly stiffer
potential must be considered, i.e., with a larger A or a
smaller k or both. Our model reproduces the velocity
profile parameter, a many-body quantity, via a one-body
picture at the onset of an avalanche, thus suggesting that
the problem of onset is largely dictated by the local ge-
ometry of the granular medium.
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